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Abstract

A comparison of explicit integrators for real-time propagation of the time-dependent Kohn-Sham equations is pre-
sented. Four algorithms are implemented and assessed for both stability and accuracy within a plane-wave pseu-
dopotential framework, employing the adiabatic approximation to the exchange-correlation functional. Simulation
results of a single sodium atom and a sodium atom embedded in bulk MgO are presented. Both the first-order Euler
scheme and the second-order finite-difference scheme are found to be unstable, but it is shown that the fourth-order
Runge-Kutta scheme is conditionally stable and accurate within this framework. Finally, excellent parallel scalability
is demonstrated in a system of hundreds of electrons.

Keywords: time-dependent density functional theory, real-time propagation, plane-wave basis

1. Introduction

Accurately describing the quantum dynamics of electrons innumerical simulations is crucial for addressing a
number of important problems in materials physics. For example, detailed understanding of the electron transfer
mechanism across material interfaces is important for improving photovoltaic cells [1]. While analytical models of-
ten work reliably for describing electron transport phenomena in simple and homogeneous systems (such as organic
molecules or bulk solids), quantitative simulations are necessary to accurately describe the dynamical effects of elec-
trons in complex environments. The proper treatment of the electron dynamics is also necessary for describing highly
non-equilibrium many-body electron-ion processes such asthe radiation damages in materials. A variety of numerical
simulations, semi-empirical [2] andab initio, however, lacks the essential component: the response of the electrons
to a large perturbation of the atomic coordinates. This is because the aforementioned approaches rely on the adiabatic
Born-Oppenheimer approximation, i.e., on the assumption that the electrons adjust instantaneously to moving ions
(e.g. by remaining in the ground state). The adiabatic Born-Oppenheimer approximation can be overcome for instance
by Ehrenfest dynamics or the surface-hopping approach for amore sophisticated treatment of the electron dynamics
[3].

Time-dependent density functional theory (TDDFT) is an attractive approach for describing quantum dynamics of
electrons in materials because of its well-balanced accuracy and efficiency. TDDFT, as a formal extension of ground-
state DFT for the treatment of time-dependent Hamiltonians, has been applied to various problems in many different
areas ranging from materials science to biochemistry (see e.g. Ref. [4] and references therein). The popularity of
TDDFT in various fields has led to a number of recent developments in the formal theory itself as well as in the
practical aspect of implementing the theory for numerical calculations [5, 6, 7].

While the majority of applications currently exploits the linear-response formulation of TDDFT [8] to investigate
the excitation of electrons based on the ground state solution of the Kohn-Sham (KS) equations, the so-called real-time
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TDDFT (RT-TDDFT) aims at explicitly obtaining the time-dependence of electronic states through the time-dependent
KS Hamiltonian. Using RT-TDDFT, it is possible to compute electronic excitation spectra from the dynamics itself,
in addition to investigating the quantum dynamics of electrons in real time. The RT-TDDFT approach is gaining
increasing popularity as many time-dependent phenomena are becoming an important focus of modern materials
research.

In this work, we numerically assess a number of explicit integrators for the time-dependent Kohn-Sham (TDKS)
equations, a set of coupled non-linear partial differential equations, in TDDFT. We have built our RT-TDDFT im-
plementation upon the Qbox code [9, 10], a highly scalable DFT code based on the plane wave pseudopotential
formalism. The excellent scalability of underlying components in the code allows us to immediately apply the new
method to the large heterogeneous systems needed to exploremodern applications. At the same time, the plane wave
basis will ensure broad applicability to a diverse set of materials as numerical convergence can be rigorously tested
by systematically increasing the basis size.

The paper is structured as follows: In Sec. 2 the theoreticalframework is outlined and computational details are
discussed. In particular, the conservation of the energy ispresented as a criterion to assess the numerical stability and
accuracy of the propagators that are introduced in Sec. 3. Inthe following, these integrators are applied to two test
systems: (i) an isolated Na atom (Sec. 4) and (ii) a 64-atom supercell containing a Na atom embedded in bulk MgO
(Sec. 5). Finally, Sec. 6 summarizes the findings of this work.

2. Theoretical framework and numerical treatment

2.1. Time-dependent Kohn-Sham equations

TDDFT is based on the one-to-one correspondence between the(time-dependent) one-particle densityn(r, t) and
the (time-dependent) one-particle potentialVext(r, t) acting on a fictitious system of non-interacting particles. This
correspondence is established by the Runge-Gross theorem [11] which formally extends the Hohenberg-Kohn theorem
[12]) to the time-dependent case. As a consequence of the Runge-Gross theorem, it is possible to also generalize the
fictitious system of non-interacting KS particles [13] under the influence of an effective KS potential to the time-
dependent case. These TDKS equations read

i~
d
dt
|φi(t)〉 = Ĥ(t)[n]|φi(t)〉 =

{

T̂ + V̂ext(t) + V̂HXC[n]
}

|φi(t)〉. (1)

In Eq. (1),T̂ is the kinetic energy operator andVHXC[n](r, t) =
∫

n(r′,t)
|r−r′| dr′ + δEXC

δn(r,t) is the sum of the Hartree (H)
potential and the exchange-correlation (XC) potential, which is derived from a universal XC functionalEXC[n]. The
electron densityn follows from the occupied KS states (labeled by the indexi) according ton(r, t) =

∑

i |φi(r, t)|2.
RT-TDDFT aims at obtaining the (time-dependent) solutionsto the non-linear TDKS equations (1) for given initial

conditions forφi . It is assumed that the so-called adiabatic functional approximation [14] (in which the XC functional
depends only on the electron density at the instantaneous time) is fulfilled, i.e.,VHXC[n](r, t) ≡ Vadiab

HXC [n(t)](r) =
∂EHXC

∂n(r) [n(t)]. In addition, the external potentialsVext studied in this work are not explicitly time dependent sincethey
arise exclusively from the Coulomb attraction of the electrons to the ions at theirfixedpositions.

In order to solve the TDKS equations, Eq. (1), a set of initialconditions for the wave functions is necessary; in this
work, they are represented by the perturbed ground-state wave functions. They are obtained by applying an additional
perturbation (see below) to the solutions of the time-independent KS Hamiltonian.

2.2. Energy conservation during the propagation

The TDKS equations [cf. Eq. (1)] reduce to the KS equations inthe case that the time dependence is factored out.
In addition, within the adiabatic approximation they have the property to conserve the total energyE(t),

E(t) =
∑

i

〈φi(t)|T̂|φi(t)〉 +
∫

n(r, t)Vext(r, t) dr + EHXC[n](t) (2)
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which is a generalization of the time-independent KS energy[15]. For the case of HXC potentials that only depend
on the instantaneous density, i.e. the adiabatic functional approximation, the conservation of the energy [16] can be
seen from the total time derivative of Eq. (2),

dE(t)
dt
=
∑

i

{

〈

φi(t)
∣

∣

∣

∣

T̂
∣

∣

∣

∣

d
dt
φi(t)
〉

+ c.c.

}

+
∑

i

{

〈

φi(t)
∣

∣

∣

∣

V̂ext(t)
∣

∣

∣

∣

d
dt
φi(t)
〉

+ c.c.

}

+
∑

i

{

〈

φi(t)
∣

∣

∣

∣

( d
dt

V̂ext(t)
)

∣

∣

∣

∣

φi(t)
〉

}

+
d
dt

EHXC[n(t)].

(3)

The last term requires some attention:

d
dt

EHXC[n(t)] =
∫

∂EHXC[n(t)]
∂n(r)

∂n(r, t)
∂t

dr =
∫

Vadiab
HXC [n(t)](r)

∂n(r, t)
∂t

dr

=
∑

i

{

〈

φi(t)
∣

∣

∣

∣

V̂adiab
HXC [n(t)]

∣

∣

∣

∣

d
dt
φi(t)
〉

+ c.c.

} (4)

Inserting Eq. (4) into Eq. (3) and collecting terms to recover the KS Hamiltonian we obtain:

d
dt

E(t) =
∑

i

{

〈

φi(t)
∣

∣

∣

∣

Ĥ[n(t)]
∣

∣

∣

∣

d
dt
φi(t)
〉

+ c.c.

}

+

∫

n(r, t)
∂Vext(r, t)

∂t
dr (5)

Using the equations of motion, Eq. (1), it becomes clear [16]that the sum of the first terms in Eq. (5) is zero.
The last term also vanishes if the external potential does not depend on the timet, as it is the case for the systems
considered here. Energy conservation is an important property of the TDKS equations since it can be used as a test of
both stability and numerical accuracy of the numerical integration of the TDKS equations.

2.3. Plane-wave expansion of the wave functions

For the numerical treatment of the TDKS equations the KS orbitals need to be expanded in a finite number of
basis functions. In this work, a supercell approach with periodic boundary conditions is used and, hence, the Bloch
theorem [17] can be exploited, leading to the expression

φi(r, t) = ψnk(r, t) =
1
√
Ω

eik·runk(r, t) (6)

for the wave functions, whereunk(r, t) is a lattice-periodic function andΩ is the volume of the supercell. The indices
n andk label the eigenstates and thek vectors in the Brillouin zone, respectively. Expanding thewave functions into
plane waves as

ψnk(r, t) =
1
√
Ω

∑

G

C(G, t)ei(k+G)·r (7)

has been quite successful in terms of numerical accuracy, convergence, and computational scalability. This basis
set is orthonormal and provides an unbiased and spatially homogeneous expansion that converges numerically by

systematically increasing merely a single parameter, the cutoff energyEcut =
G2

cut

2 . Ecut corresponds to the maximum
kinetic energy of all plane waves in the calculation.

Since the basis itself is time independent, all the time dependence is carried by the plane-wave coefficientsC(G)
of the expansion. This implies that the spatial partial derivatives of the wave functions are readily available in the
reciprocal space. It is also useful to note that the plane waves are independent of the nuclei positions, which makes
the framework convenient for first principles molecular dynamics approaches, thanks to the absence of basis set
superposition errors and spurious Pulay forces [18].
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2.4. Computational details

Treating the singularity of the Coulomb potential in the close vicinity of the nuclei is computationally expen-
sive in a plane-wave basis since a very large number of basis functions is needed for converged calculations. The
pseudopotential approach is used to circumvent this issue by replacing the core electrons with non-local effective
potentials, which are derived by inverting the atomic KS equation (see e.g. Ref. [19]). In the present work, Hamann-
Schlüter-Chiang norm-conserving pseudopotentials witha modification by D. Vanderbilt [20] are used within the
Kleinman-Bylander approach [21].

The local-density approximation as parametrized by Perdewand Zunger [22] is used within the adiabatic approx-
imation for the exchange-correlation potential in the calculations. Due to the size of the supercells in this work it is
sufficient to use only theΓ point to sample the Brillouin zone even though the implementation is capable of takingk
points into account.

3. Propagation schemes

3.1. General considerations

For a non-interacting time-dependent Schrödinger equation (TDSE) there exists a plethora of numerical propaga-
tors to choose from. Their key properties such as (semiexact) norm conservation and (semiexact) energy conservation
as well as other numerical properties including different conditions of stability (with respect to the time/space dis-
cretization) are well known [23]. For the case of the TDKS equations, Eq. (1), in combination with a plane-wave
expansion of the wave functions, the situation is complicated by several factors:

First, unlike the TDSE, the TDKS equations are non-linear, and the inverse of the KS operator is not available
explicitly. Thus, all methods are semi-implicit at best, i.e., implicit with respect to the linear part of the operator only.

Second, within the plane-wave framework implicit and semi-implicit methods are not feasible due to the dimen-
sion of the linear operator (number of plane waves squared) and the practical inability to invert such a large matrix
explicitly. The number of plane waves in the present calculations is over 33000, and is routinely much larger for other
applications. Therefore, the (semi-implicit) Crank-Nicholson scheme, even though it has been successfully used in
reduced basis set local-orbital methods (e.g. [6, 24]), is not a viable option for a plane-wave implementation.

Third, conditional or unconditional stability of a time propagation algorithm in the case of the TDSE is not a
guarantee of stability for the TDKS case; due to the self-consistent nature of the TDKS, there are feedback mechanisms
that can worsen the stability criterion, or even make a method completely unstable when applied to the TDKS. This is
a well-known phenomenon observed in studies of the non-linear extensions of the Schrödinger equation [25, 26] and
will be discussed for the second-order finite-differences scheme below.

Fourth, within the plane-wave formalism it is tempting to use approximations to the linear time-evolution operator
instead of approximating the differential equation by finite differences. Moreover, split-operator Trotter-like expan-
sions exploit the fact that the kinetic energy (the local potential) part of the Hamiltonian is diagonal in reciprocal (real)
space. Since these techniques can potentially benefit from very large time steps [5, 27], they have been traditionally
favored in the community [4]. However, these approaches cannot be implemented straightforwardly without further
algorithmic considerations because one needs to deal with the non-local part of the pseudopotential [27]. Furthermore,
the Hamiltonian operator is not a constant and not knowna priori, since it depends on the electronic states at later
times (see e.g. the Magnus expansion [28] and the railway method [5]). Hence, in this work we restrict ourselves to
finite-difference approximations which have a controlled order in the error.

Note also that all propagators investigated in this work rely on the application of the entire Hamiltonian to the
wave function and on updating the Hamiltonian correspondingly; therefore, no particular structure of the Hamiltonian
is assumed or exploited for the propagation. Consequently,for the integration of the TDKS equations we can directly
take advantage of some of the existing DFT architecture as implemented in the Qbox code. This code is optimized for
scalability and features highly-optimized routines for solving the regular KS equations on a large number of processors
[29].
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3.2. First-order Euler scheme
The Euler approach is the simplest propagation scheme in which the wave functions at the timet+∆t are obtained

from the one at timet according to

|φ(t + ∆t)〉 = |φ(t)〉 − i ∆t Ĥ[n] |φ(t)〉 . (8)

For this scheme, only the static Hamiltonian att = 0 (i.e. Ĥ[n(t = 0) = n0]) is considered in this work, instead of
the self-consistent (density-dependent) Hamiltonian. This is due to the numerical instability issues that we observed
for this scheme and discuss below. The computational load associated with solving Eq. (8) arises from a single
application of the Hamiltonian to the wave functions. The error in this scheme isO(∆t), i.e., first-order in∆t.

3.3. Second-order finite differences
Within the second-order finite-difference scheme (hereafter called the SOD scheme) more information than in the

Euler scheme is used to calculate the wave functions att + ∆t from the ones at botht andt − ∆t according to

|φ(t + ∆t)〉 = |φ(t − ∆t)〉 − 2 i∆t Ĥ[n] |φ(t)〉 . (9)

SOD is slightly more sophisticated than the Euler approach,and the error isO(∆t2). As in the case of the Euler
scheme, the Hamiltonian has to be applied only once for each time step, but two copies of the wave functions (att and
t − ∆t) need to be stored in memory for the calculation of the new wave functions.

For the propagation according to Eq. (9), three different levels of the self-consistency of the Hamiltonian [23] are
compared. In the fully self-consistent approach (sc-SOD) the Hamiltonian is updated at each time step (cf. Eq. 9). For
further assessing numerical stability and accuracy associated with the non-linearity, we consider two additional cases:
(i) Within the non-self-consistent propagation (nsc-SOD)the Hamiltonian is kept fixed at̂H[n0], as described for the
Euler scheme above. (ii) In the semi-self-consistent propagation (sc100-SOD) the Hamiltonian is updated every 100
time steps, i.e., self-consistency is recovered every 100 steps.

3.4. Second-order Runge-Kutta scheme
Another second-order approach tested in this work is the second-order Runge-Kutta [30] scheme (called RK2 in

the following). In this case, the wave functions att + ∆t are computed according to

|k1〉 = −i ∆t Ĥ[nφ(t)] |φ(t)〉 ,
|k2〉 = −i ∆t Ĥ[nφ(t)+0.5·k1] |φ(t) + 0.5 · k1〉 ,

|φ(t + ∆t)〉 = |φ(t) + k2〉 .
(10)

As with the SOD scheme, the integration error scales asO(∆t2). The higher sophistication of this approach with
respect to the Euler scheme is achieved by invoking multipleevaluations of the Hamiltonian and deriving the updated
wave functions from these intermediate steps [30]. While this method allows for larger time steps for the integration
of the TDKS equations, it also comes with higher computational cost due to the additional updates of the Hamiltonian
and its application to the respective wave functions.

3.5. Fourth-order Runge-Kutta scheme
The fourth-order Runge-Kutta scheme (RK4) is a step beyond the RK2 method, further improved by including

more intermediate evaluations of the Hamiltonian [30]. In this case, the propagation is done according to

|k1〉 = −i ∆t Ĥ[nφ(t)] |φ(t)〉 ,
|k2〉 = −i ∆t Ĥ[nφ(t)+0.5·k1] |φ(t) + 0.5 · k1〉 ,
|k3〉 = −i ∆t Ĥ[nφ(t)+0.5·k2] |φ(t) + 0.5 · k2〉 ,
|k4〉 = −i ∆t Ĥ[nφ(t)+k3] |φ(t) + k3〉 ,

|φ(t + ∆t)〉 =
∣

∣

∣

∣

∣

φ(t) +
1
6

k1 +
1
3

k2 +
1
3

k3 +
1
6

k4

〉

.

(11)
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Figure 1: (Color online) Cubic unit cell containing a singleNa atom (small black circle). To prepare a non-equilibrium initial condition, the Na 3s
wave function (represented by the yellow isosurface) has been shifted by (0.32, 0.32, 0.32) Å.

The RK4 scheme clearly shows the highest computational cost, as it requires four evaluations and updates of the
Hamiltonian. On the other hand, the time step can be chosen much larger because the integration error only scales as
O(∆t4).

4. Test case I: the isolated Na atom

As a test of the propagators introduced in Sec. 3, the time-evolution of a single Na atom in a cubic supercell
(a=7.94 Å) is studied (cf. Fig. 1). The size of this supercell, i.e., the distance between mirror images of the Na atom,
has been chosen such that the total energy does not change more than 55 meV upon a further increase of the cell
size. The plane-wave cutoff energy was chosen to be 70 Ry which ensures that the total energy is converged to about
20 meV. For this system the ground-state density is calculated within DFT and, subsequently, the 3s wave function
is shifted by (0.32, 0.32, 0.32) Å in real space in order to prepare a non-equilibrium initial condition for the time
propagation. Note that the orthogonality among the wave functions is no longer preserved after this shift which we
purposely introduce for the aim of testing the different integrators.

4.1. Numerical stability and conservation of energy

The numerical stability is one of the most important criteria when solving the TDKS equations with the explicit
integrators introduced above. Since the total energy is a conserved quantity, as discussed in Sec. 2.2, it is used as a
measure of the stability of the propagation.

In Fig. 2 the time evolution of the total energy is shown for the different schemes introduced in the previous
section. A time step of∆t = (0.069 as) is used for all schemes except for the RK4 one; in this case a ten times larger
time step was used.

From Fig. 2(a) it can be seen that the Euler scheme, even though the Hamiltonian is kept fixed during the prop-
agation, is highly unstable. The total energy diverges veryquickly after a decrease from its original value. In the
same figure, the results obtained using the RK2 propagator are in agreement with the RK4 propagator and it is found
that they conserve the total energy within 2.72 meV for a propagation time of up to 11 fs. Even though both of the
two propagation schemes appear to fulfill the numerical stability, the RK2 scheme eventually becomes unstable for a
longer propagation as discussed below. For the RK4 approach, also the conservation of the norm of the unshifted wave
functions was checked and found to be conserved up to within 10−6 during the propagation tot = 13.8 fs. In addition,
Fig. 2(a) shows that the sc100-SOD scheme is able to maintainthe stability to a certain point: Up until≈ 8.5 fs the
total energy is conserved fairly well and is only slightly smaller than the initial value. However, beyond that point the
deviation grows very quickly and the total energy again diverges.

For comparison, the different levels of self-consistency in the SOD scheme as shown in Fig. 2(b) are analyzed. The
figure clearly shows that the sc-SOD scheme is numerically unstable even for a propagation time of less than 0.1 fs.
Keeping the Hamiltonian fixed for some number of integrationsteps (e.g. 100 in this work) improves the numerical
stability of the algorithm, leading to a stable propagationfor a much longer time [cf. Fig. 2(a)]. The nsc-SOD scheme
is found to be conditionally stable, however, keeping the Hamiltonian fixed is unphysical for practical applications
within RT-TDDFT. Therefore, the SOD schemes are an example of an explicit method that is well-behaved in the non-
self-consistent case (nsc-SOD or, for instance, the linearSchrödinger equation) but becomes unconditionally unstable
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Figure 2: (Color online) Total energyEtot (in eV) of the Na atom (att = 0 fs the 3s wave function was shifted by (0.32, 0.32, 0.32) Å from its
equilibrium position in real space) as a function of timet (in fs). In (a) the Euler scheme (black solid line,∆t = 0.069 as) and the sc100-SOD
second-order finite-difference scheme (red solid line,∆t = 0.069 as) are compared to the Runge-Kutta propagators (blue solid line). The second-
order (∆t = 0.069 as) and the fourth-order (∆t = 0.691 as) Runge-Kutta scheme yield the same trajectory for thetimes shown in (a). In (b) the fully
self-consistent second-order finite-difference method (green solid line) is compared to the sc100-SOD (red solid line) and the non-self-consistent
(red dotted line) one for∆t = 0.069 as.

for the integration of the self-consistent TDKS. This illustrates the difficulty of having to deal with the non-linear
Hamiltonian of the TDKS formalism when the time propagationis performed.

For investigating further details, Fig. 3 shows the numerical stability of the RK2 (the sc100-SOD second-order)
propagation schemes up to 35 fs (11 fs) as calculated using different time steps∆t. For both propagators, the propaga-
tion becomes expeditiously more stable when smaller time steps are used. In addition, from comparing Fig. 3(a) and
(b) it is found that the (fully self-consistent) RK2 scheme is much more stable than the sc100-SOD when the same
time step is chosen. The total energy deviations in the stable regime are also much smaller for the RK2 case.

As mentioned earlier, the nsc-SOD and the RK4 propagator arefound to be conditionally stable in this work, i.e.,
they can be used for propagation of arbitrary duration as long as the time step∆t is chosen to be small enough. Plotting
the critical time step (for which the propagation is numerically found to remain stable) versus the plane-wave cutoff

energyEcut in Fig. 4 indicates an inverse proportionality of∆t andEcut. Furthermore, it can be seen that the critical
time step used in the RK4 scheme can be roughly three times as large as the one used in the nsc-SOD for a givenEcut.
We emphasize, however, that the nsc-SOD scheme is not physically meaningful for propagating the TDKS equation
even though it is numerically robust.

4.2. Evolution of the system

In order to illustrate the evolution of the system during thepropagation, the total energy, being a conserved
quantity, does not provide helpful insights. Instead, the sum of the expectation values,

∑

i

〈

φi(t)
∣

∣

∣Ĥ[n]
∣

∣

∣φi(t)
〉

, as shown
in Fig. 5 is used as a time dependent quantity that provides qualitative information of the energy spectrum of the
wave functions. As expected, the results from the Euler scheme are not useful due to the immediate instability of
this propagation scheme. Fort up to≈ 13 fs it can be seen in Fig. 5(a) that the RK2 and RK4 propagations agree
with each other exactly (therefore only RK4 is shown) even though they are calculated using different∆t. They
show pronounced oscillations with a period of approximately 1.5 fs. Additionally, contributions from other higher
frequencies become visible from the fine structure of the curves. These features derive from the fact that the wave
function that was shifted att = 0 starts to oscillate around the (fixed) position of the nucleus, as expected. Also other
wave functions start to oscillate through the self-consistent potential (which depends on all occupied wave functions)
in the TDKS Hamiltonian.

We note that test calculations have shown that varying the plane-wave cutoff energy between 50 Ry and 80 Ry
does not significantly impact the time evolution of the system with the change in the sum of the expectation values
remaining smaller than 8 meV.
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Figure 3: (Color online) Total energyEtot (in eV) of the Na atom as a function of timet (in fs). The curves in (a) result from the sc100-SOD
second-order finite-difference scheme and the ones in (b) from the second-order Runge-Kutta scheme. Time steps of∆t = 0.069 as (black solid
lines),∆t = 0.104 as (red solid lines), and∆t = 0.138 as (green solid lines) were used.

Figure 4: (Color online) Time steps∆t (in as) for which the non-self-consistent second-order finite-difference scheme (a) or the fourth-order Runge-
Kutta scheme (b) are stable (green triangles pointing up) orunstable (red triangles pointing down), depending on the respective plane-wave cutoff
energyEcut (in Ry) used.
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Figure 5: (Color online) Sum of the expectation values
∑

i

〈

φi (t)
∣

∣

∣Ĥ[n]
∣

∣

∣ φi(t)
〉

(in eV) of all valence wave functionsi of the Na atom (att = 0 fs the

3 s wave function was shifted by (0.32, 0.32, 0.32) Å from its equilibrium position in real space) as a function of timet (in fs). In (a) the Euler
scheme (black solid line,∆t = 0.069 as) and the sc100-SOD second-order finite-difference scheme (red solid line,∆t = 0.069 as) are compared to
the Runge-Kutta propagators (blue solid line). The second-order (∆t = 0.069 as) and the fourth-order (∆t = 0.691 as) Runge-Kutta scheme yield
the same trajectory for the times shown in (a). In (b) the fully self-consistent second-order finite-difference method (green solid line) is compared
to the sc100-SOD (red solid line) and the non-self-consistent (red dotted line) one for∆t = 0.069 as.
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Figure 6: (Color online) Total energyEtot (in eV) of the Na atom (att = 0 fs the 3s wave function was shifted by (0.32, 0.32, 0.32) Å from its
equilibrium position in real space) as a function of timet (in fs). The results have been obtained using the RK4 propagator and∆t = 0.691 as.

Comparing the results of the two Runge-Kutta propagators [cf. Fig. 5(a)] to the behavior obtained using the
sc100-SOD propagation scheme shows a close similarity for small timest. However, this agreement becomes worse
for larger times, i.e., when the sc100-SOD becomes increasingly unstable. In accordance with the discussion of the
total energy, Fig. 5(b) points out that the sc-SOD becomes unstable and, hence, does not yield meaningful results
for the expectation-value sum fort > 0.1 fs. Even though the nsc-SOD is conditionally stable, Fig. 5(b) shows that
the expectation-value sum does not change during the propagation because of the non-self-consistent nature of the
propagation.

Figure 6 shows the long-term stability of the propagation using the RK4 scheme; the total energy for the Na atom
is plotted for a total propagation time of 2.2 ps. It can be seen that the total energy is well conserved during the
propagation with a deviation of less than 30 meV during the 2.2 ps. As discussed above, the integration error in the
RK4 scheme scales asO(∆t4). More specifically, it has been found numerically that the total energy conservation (per
unit time) can be improved by a factor of 27.8 when the time step is reduced by a half.

5. Test case II: Na atom embedded in MgO

Having established that the RK4 method is suitable for our implementation of RT-TDDFT within a plane-wave
pseudopotential formalism, we now show that the scheme is suitable for investigating large, complex systems. We
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Figure 7: (Color online) The 64-atom unit cell of MgO (Mg atoms red circles, O atoms blue circles) containing a single Na atom (black circle) on
an oxygen lattice position.
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Figure 8: (Color online) Sum of the expectation values
∑

i

〈

φi (t)
∣

∣

∣Ĥ[n]
∣

∣

∣ φi(t)
〉

(in eV) of all valence wave functions in the Na:MgO 64-atom supercell

(at t = 0 fs the Na-induced level within the MgO gap was shifted by (0.032, 0.032, 0.032) Å from its equilibrium position in real space) as a function
of time t (in fs). The sc100-SOD second-order finite-difference scheme (red solid line,∆t = 0.069 as) is compared to the second-order (green solid
line,∆t = 0.069 as) and the fourth-order (blue solid line,∆t = 0.691 as) Runge-Kutta scheme.

applied our implementation to a bulk system, consisting of a64-atom supercell of crystalline MgO with one of the
O atoms replaced by a Na atom. This corresponds to 32 Mg atoms,31 O atoms, and 1 Na atom with a total of 449
electrons in the calculation (cf. Fig. 7). After obtaining the ground state of the system, the 3s wave function of the
Na atom is shifted by (0.032, 0.032, 0.032) Å in real space to obtain a non-equilibrium initial condition for the time
propagation.

The evolution of the Na:MgO system is shown in Fig. 8 using again the sum of the expectation values as an
example for a quantity of interest. The sc100-SOD and the RK2are also shown for comparison to the RK4 propagation
scheme. The intrinsic inaccuracy of the sc100-SOD scheme isevident in the figure as this propagator is applied to a
complex system such as Na:MgO: the oscillations are much toolarge and the long time stability is worse, as discussed
earlier.

To test the long-term stability of the RK4 propagation also for this complex system, we plotted the total energy for
a total propagation time of 118 fs in Fig. 9. The total energy is well-conserved during the propagation; the deviation
remains on the order of 2.7 eV during 118 fs. Note that this error corresponds to merely 0.006 % of the total energy
of the system, hence, the magnitude of the deviation per electron is on the same order as in the case of a single Na
atom. Furthermore, as discussed above it can be reduced by a factor of≈ 28 by using a half of the time step size.

5.1. Parallel scaling

Finally, it is important to analyze the scaling of the RT-TDDFT implementation presented in this work with respect
to the number of processor cores the calculation is run on. InFig. 10 the time required to perform one step of steepest
descent (SD), which is a typical method for obtaining solutions to the ground-state Hamiltonian, is compared to the
time required to perform one step of real time propagation using the RK4 method. The RK4 method requires four
updates of the Hamiltonian and four evaluations ofĤ[nφ(t)] |φ(t)〉 per time step. The SD method requires one evaluation
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Figure 9: (Color online) Total energyEtot (in eV) of the Na:MgO 64-atom supercell (att = 0 fs the Na-induced level within the MgO gap was
shifted by (0.032, 0.032, 0.032) Å from its equilibrium position in real space) as a function of timet (in fs). The results have been obtained using
the fourth-order Runge-Kutta propagator and∆t = 0.691 as.
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Figure 10: (Color online) The number of steps that can be performed within one second wall time is plotted versus the number of processing cores
used in the calculation for the Na:MgO 64-atom supercell. The steepest descent algorithm (black curve) is compared to the RK4 propagation (red
curve).
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of the Hamiltonian per step as well as the re-orthogonalization of the states. For that reason, the SD scheme is roughly
a factor of four faster when the calculation is run on one coreonly.

However, the orthogonalization of the wave functions does not scale well with the number of processing cores.
This becomes obvious in Fig. 10 for more than 200 cores, wherethe scalability of the SD scheme is significantly
reduced. In contrast, the RK4 propagator scales very well (close to linearly) up to at least 1536 cores (1 step/s),
benefiting directly from the highly parallelized routines in the Qbox code that are exploited for this explicit-integration
scheme.

6. Conclusions

We find that the 4th order Runge-Kutta scheme is a conditionally stable and well-balanced general purpose propa-
gator for the TDKS equations when implemented within the plane wave pseudopotential formalism. Several other in-
tegrators such as Euler scheme, the second-order finite-differences scheme, and the second-order Runge-Kutta scheme
were also studied in this work. The Euler scheme was found to be highly unstable. Relaxing the self-consistency re-
quirement of the non-linear Hamiltonian in the TDKS improves the stability of the the second-order finite differences
scheme. This observation indicates that the integrators that are designed for time-dependent Schrödinger equationsare
not necessarily suitable for integrating TDKS equations. In limited instances, the second-order Runge-Kutta scheme
can be an efficient alternative propagator (with smaller computationalexpense than the fourth-order version) for cases
where the time step needs to be very small and the total propagation time required is not long. This can be the case for
certain applications involving very fast external perturbations where the physics of the problem requires a very fine
time resolution.

The explicit propagators allow for a better scalability with respect to the number of computing cores compared to
typical ground-state or Born-Oppenheimer methods. The improvement results from the fact that the time-propagation
schemes do not require the orthogonalization of the propagated wave functions, which is a known bottleneck for the
scalability [9]. Furthermore, these explicit integratorsdo not assume a particular form of the potential (including
the pseudopotential and exchange-correlation potential)and they can directly benefit from existing highly parallel
routines developed for the Born-Oppenheimer calculations.

The present implementation of real-time TDDFT in the plane-wave pseudopotential formalism using the explicit
integrators provides an ideal framework for further work inthe context of first principles molecular dynamics simula-
tions where the Born-Oppenheimer approximation is a key limitation.
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